Robin’s criterion on divisibility

نویسندگان

چکیده

Robin’s criterion states that the Riemann hypothesis is true if and only inequality $$\sigma (n) < e^{\gamma } \times n \log n$$ holds for all natural numbers $$n > 5040$$ , where (n)$$ sum-of-divisors function of $$\gamma \approx 0.57721$$ Euler–Mascheroni constant. We show Robin are not divisible by some prime between 2 1771559. prove when $$\frac{\pi ^{2}}{6} n' \le $$n>5040$$ $$n'$$ square free kernel number n. The possible smallest counterexample implies $$q_{m} e^{31.018189471}$$ $$1 \frac{(1 + \frac{1.2762}{\log q_{m}}) (2.82915040011)}{\log n}+ \frac{\log N_{m}}{\log n}$$ $$(\log n)^{\beta 1.03352795481\times (N_{m})$$ (2.82915040011)^{m} N_{m}$$ $$N_{m} = \prod _{i 1}^{m} q_{i}$$ primorial order m, $$q_{m}$$ largest divisor $$\beta \frac{q_{i}^{a_{i}+1}}{q_{i}^{a_{i}+1}-1}$$ an Hardy–Ramanujan integer form $$\prod _{i=1}^{m} q_{i}^{a_{i}}$$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A divisibility criterion for exceptional APN functions

We are interested in the functions from F2m to itself which are Almost Perfectly Nonlinear over infinitely many extensions of F2, namely, the exceptional APN functions. In particular, we study the case of the polynomial functions of degree 4e with e odd and we give a necessary condition on an associated multivariate polynomial for the function to be exceptional APN. We use this condition to con...

متن کامل

Perfect divisibility and 2-divisibility

A graph G is said to be 2-divisible if for all (nonempty) induced subgraphs H of G, V (H) can be partitioned into two sets A,B such that ω(A) < ω(H) and ω(B) < ω(H). A graph G is said to be perfectly divisible if for all induced subgraphs H of G, V (H) can be partitioned into two sets A,B such that H[A] is perfect and ω(B) < ω(H). We prove that if a graph is (P5, C5)-free, then it is 2-divisibl...

متن کامل

On Divisibility concerning Binomial Coefficients

Binomial coefficients arise naturally in combinatorics. Recently the speaker initiated the study of certain divisibility properties of binomial coefficients, and products or sums of binomial coefficients. In this talk we introduce the speaker’s related results and various conjectures. The materials come from the author’s two preprints: 1. Z. W. Sun, Products and sums divisible by central binomi...

متن کامل

On divisibility in definable groups

Let M be an o–minimal expansion of a real closed field. It is known that a definably connected abelian group is divisible. In this note, we show that a definably compact definably connected group is divisible.

متن کامل

On Divisibility Properties of Integers

1. Throughout this paper, we use the following notations : For any real number x let [x] denote the greatest integer less than or equal to x, and let lxll denote the distance from x to the nearest integer : jjxjl =min (x-[x], 1 + +[x]-x) . We write e""=e(x). The cardinality of the set X is denoted by JXJ . A (n) denotes the Mangoldt symbol . In this paper, our goal is to study the following pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ramanujan Journal

سال: 2022

ISSN: ['1572-9303', '1382-4090']

DOI: https://doi.org/10.1007/s11139-022-00574-4